Self-Adaptive MOEA Feature Selection for Classification of Bankruptcy Prediction Data

نویسندگان

  • A. Gaspar-Cunha
  • G. Recio
  • L. Costa
  • C. Estébanez
چکیده

Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Evolutionary Algorithms for Feature Selection: Application in Bankruptcy Prediction

A Multi-Objective Evolutionary Algorithm (MOEA) was adapted in order to deal with problems of feature selection in datamining. The aim is to maximize the accuracy of the classifier and/or to minimize the errors produced while minimizing the number of features necessary. A Support Vector Machines (SVM) classifier was adopted. Simultaneously, the parameters required by the classifier were also op...

متن کامل

Feature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach

In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...

متن کامل

A Heuristic Model for Predicting Bankruptcy

Bankruptcy prediction is one of the major business classification problems. The main purpose of this study is to investigate Kohonen self-organizing feature map in term of performance accuracy in the area of bankruptcy prediction.  A sample of 108 firms listed in Tehran Stock Exchange is used for the study. Our results confirm that Kohonen network is a robust model for predicting bankruptcy in ...

متن کامل

Feature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach

In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...

متن کامل

The effect of feature selection on financial distress prediction

Financial distress prediction is always important for financial institutions in order for them to assess the financial health of enterprises and individuals. Bankruptcy prediction and credit scoring are two important issues in financial distress prediction where various statistical and machine learning techniques have been employed to develop financial prediction models. Since there are no gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014